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ABSTRACT: Recent advances in neonatal intensive care include
and are partly attributable to growing attention for comfort and pain
control in the term and preterm infant requiring intensive care.
Limitation of painful procedures is certainly possible, but most
critically ill infants require unavoidable painful or stressful proce-
dures such as intubation, mechanical ventilation, or catheterization.
Many analgesics (opioids and nonsteroidal anti-inflammatory drugs)
and sedatives (benzodiazepines and other anesthetic agents) are
available but their use varies considerably among units. This review
summarizes current experimental knowledge on the effects of seda-
tive and analgesic drugs on brain development and reviews clinical
evidence that speaks for or against the use of common analgesic
and sedative drugs in the NICU but avoids any discussion of
anesthesia during surgery. Risk/benefit ratios of intermittent bo-
luses or continuous infusions for the commonly used sedative and
analgesic agents are discussed in the light of clinical and exper-
imental studies. The limitations of extrapolating experimental
results from animals to humans must be considered while making
practical recommendations based on the currently available evi-
dence. (Pediatr Res 67: 117–127, 2010)

Experimental Data on the Effects of Analgesics and
Sedative Drugs During Central Nervous System

Development

Appropriate development of the CNS relies on the precise
temporal-spatial orchestration of multifaceted molecular path-
ways guiding proliferation, migration, differentiation, and sur-
vival of neural cells. Interference with these finely tuned
developmental mechanisms can disrupt physiologic develop-
mental patterns, and might, ultimately, lead to permanent
impairment of CNS functions. Analgesics and sedatives are
potent modulators of several ionotropic and G-protein-linked
receptor signaling pathways implicated in important morpho-
genetic events during brain development. The question of
whether these drugs exert adverse effects on brain develop-
ment when administered during pregnancy or in neonatal
populations is of utmost importance. Experimental data de-

scribing the effects of analgesics or sedatives on the develop-
ing brain from in vitro (1–10) and in vivo (11–32) studies are
summarized in Tables 1 and 2, respectively.

Opioid analgesics primarily act on �-, �-, and �-types
of opioid receptors on the cell surface. On agonist binding,
all opioid receptor subtypes recruit inhibitory G proteins
(Gi/o) to initiate the activation of multiple intracellular
signaling cascades (33,34). In addition to analgesic effects,
these signaling pathways are implicated in a variety of other
biologic processes, including the modulation of proliferation,
survival and differentiation of the neural stem cells, neurons,
or glia that express opioid receptors (34).

A role for opioid receptor-mediated signaling in develop-
mental processes is suggested by the early expression of
opioid receptors in the developing rodent brain (35,36).
Chronic morphine exposure during the prenatal and early
postnatal periods induces significant reductions in brain vol-
ume, neuronal packing density, and dendritic growth (15).
Animals subjected to such treatment show long-term impair-
ments in learning abilities and locomotor activity (16,17).
Furthermore, opioids modulate cell proliferation in germina-
tive zones of the developing brain in a receptor-, brain region-,
and cell type-specific manner (1,37–39) (see Tables 1 and 2
for specific effects). However, the role of opioid signaling in
neural cell migration in the developing brain remains un-
known up to date.

In contrast, opioid blockade by naltrexone leads to increases
in brain size, suggesting that endogenous opioid signaling is
associated with pruning during development (40). Naltrexone-
induced chronic opioid blockade in the early postnatal period
significantly increases dendritic arborization and the number
of dendritic spines, indicating that endogenous opioids are
critical regulators of neuronal differentiation and growth (41).
Application of selective � receptor agonists increases nerve
growth factor (NGF)-dependent survival of embryonic chick
dorsal root ganglion neurons, suggesting that growth factor-
mediated neuronal survival might be modulated by opioid
signaling (42). Daily morphine treatment or repetitive inflam-

Received May 28, 2009; accepted October 14, 2009.
Correspondence: Peter C. Rimensberger, M.D., Department of Pediatrics, Pediatric

and Neonatal Intensive Care Unit, University Hospital of Geneva, 6 Rue Willy Donzé,
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matory pain in postnatal rats (1–7 d) lead to long-term alter-
ations in pain threshold, locomotor behavior, and alcohol
preference during adulthood, but these changes are attenuated
when the two treatments are combined (43). In the adult rat
brain, however, high-opioid doses induce electroencephalo-
graphic seizure activity and cell death in several brain regions
(44,45).

Acetaminophen and other nonsteroidal anti-inflammatory
drugs (NSAID) inhibit cyclooxygenase (COX)-1 and COX-2
enzymes expressed in the CNS and peripheral organs (46–
48). COX-2 is expressed in distinct neuronal populations
throughout the forebrain, and its expression in dendritic spines
is dynamically regulated by NMDA-dependent synaptic ac-
tivity (48,49). In rodents, COX-2 expression is relatively low
during the first 2 postnatal weeks and increases markedly from
the third postnatal week, coinciding with the peak of synap-
togenesis (50). In patients with Rett syndrome, a severe
neurodevelopmental disorder characterized by impaired den-
dritic differentiation (51), the intensity of somatic and den-
dritic COX-2 immunostaining, and the number of COX-2
immunostained neurons are significantly reduced compared
with neurologically normal controls (50). Whether pharmaco-
logical blockade of COX signaling using nonsteroidal anti-
inflammatory drugs can also interfere with neuronal differen-
tiation remains unknown.

Most sedative drugs operate by ligand-gated ionotropic
receptors to modulate the activity of different neurotransmitter
systems (52). In addition to their roles in synaptic transmis-
sion, these neurotransmitters also act as epigenetic factors
during development to control important biologic processes
including progenitor cell proliferation, neuroblast migration,
and neuronal differentiation (53). A delicate balance between
excitatory and inhibitory signals plays a key role in the
functional assembly of neuronal networks (54). Thus, the
impact of sedative drugs on the development of activity-
dependent neuronal networks is possible because even small

changes in the relative amounts of excitation and inhibition
can markedly alter neuronal processing. An increasing number
of experimental observations suggest potentially adverse ef-
fects of sedative drugs on the developing brain.

Ketamine. Ketamine primarily blocks NMDA-mediated
neurotransmission by binding noncompetitively to the phen-
cyclidine (PCP)-binding site of the NMDA receptor (55).
Importantly, this drug also interacts with adenosinergic,
monoaminergic, cholinergic, and opioidergic signaling path-
ways (56,57). In rodents, duration of exposure to ketamine is
critical (19,20,58), and specific brain regions are particularly
vulnerable to NMDA activation during critical periods of
development (59). Results on the effects of a single bolus
injection are controversial (Table 1) (22–24). Using in vitro
culture of isolated GABAergic neurons from newborn rats,
Vutskits et al. (4,5) demonstrated that low, nonapoptogenic
concentrations of ketamine interfere with dendritic arboriza-
tion in these cells, potentially altering the development of
neuronal networks. These rodent data were extended to pri-
mates, indicating apoptotic and necrotic cell death after pro-
longed ketamine exposure (24 h) on gestational d 122 and
postnatal d 5 but not on postnatal d 35. Shorter ketamine
exposure (3 h) did not lead to neuronal cell death in 5-d-old
monkeys (25).

Benzodiazepines. Benzodiazepines selectively activate the
GABAA receptor complex (60), which is functional from early
developmental stages (61,62). Chronic prenatal exposure of
rat fetuses to diazepam results in long-term functional deficits
and atypical behavioral patterns (27,28). Exposure of 7-d-old
mice to diazepam (10–30 mg/kg i.p.) induced widespread
apoptosis in cortical and subcortical areas (31,63), whereas
lower doses (5 mg/kg) induced apoptosis only in the laterodor-
sal thalamus and did not lead to behavioral or cognitive
impairments later in life (24). Prolonged diazepam treatment
during the prenatal and the postnatal period also induce long-
lasting changes in GABAA receptors and neurosteroid levels
(64–66). A single, subanesthetic dose of midazolam can
induce neuroapoptosis in the cerebral cortex and basal ganglia
of newborn mice (23). In newborn rats, midazolam potentiates
nociceptive behavior, sensitizes cutaneous reflexes, and is
devoid of any sedative effects (67). Whether neonatal expo-
sure to midazolam also induces long-term behavioral or cog-
nitive deficits remains unknown.

Propofol. Propofol (2,6-diisopropyl phenol) is an alkyl
phenol derivative dissolved in a lipid emulsion. This drug
potentiates the effect of GABA by inducing tyrosine kinase-
mediated phosphorylation of the � subunits of the GABAA
receptor complex (68). Despite controversy (69,70), this agent
is commonly used in young children (71), including neonates
(72). Toxicity of propofol for specific neurons has been shown
in different in vitro and in vivo models (Table 2).

Barbiturates. Barbiturates are also potent agonists of the
GABAA receptor. Exposure of 7-d-old rats to pentobarbital
(20–30 mg/kg) or phenobarbital (40–100 mg/kg) for 5 h
induced widespread neuronal apoptosis in the brain (31). In
these experiments, neuronal death was associated with re-
duced expression of neurotrophins and other survival-
promoting proteins in the brain (31). In contrast, single doses

Table 1. In vitro toxicity of sedative/analgesic drugs in the
developing brain

Drugs Species Results

Morphine Mouse Inhibition of DNA synthesis in the
developing cerebellum (1)

Rat High dose (1 mM) inhibits neurite
elongation, low concentrations (�10
nM) enhance neurite promoting activity
of NGF (2)

Ketamine Rat Concentration-, age, and
duration-dependant apoptosis (3)

Prolonged exposition to low concentrations
impairs dendritic arborization (4,5)

Monkey Concentration-, age-, and
duration-dependant apoptosis (10)

Propofol Rat Concentration-, time-, and space-dependant
apoptosis (6)

Possibly irreversible lesions to GABAergic
neurons (7)

Decreased dendritic growth (8)
Chick embryo Growth cone collapse and neurite

destruction (9)
Midazolam Rat No effect on dendritic growth (8)
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of thiopental (5–25 mg/kg) did not induce neurodegeneration
in the CNS (24).

Combined use of sedative agents. In the NICU, children are
often exposed to combinations of different analgesics and
sedatives either simultaneously or sequentially, to reduce po-
tential side effects. Most drugs have GABA-mimetic and/or
NMDA antagonist properties, raising the question of whether
combined use of sedative drugs has additive or synergistic
neurotoxic effects (30,73). For example, coadministration of
even low concentrations of ketamine and nitrous oxide syn-
ergistically enhances their neurotoxic effects (74). Sedative
concentrations of midazolam and ketamine induce apoptosis
in the infant mouse brain more effectively than either of these
drugs alone (23). Coadministration of ketamine with propofol
or thiopental also potentiates apoptotic neurodegeneration in
young rodents (24). Exposure of 7-d-old rats to midazolam-
nitrous oxide-isoflurane anesthesia for 6 h led to widespread
neurodegeneration and this was accompanied by persistent
learning deficits (30). Anesthesia-induced activation of apo-
ptotic pathways in immature neurons implicates significant
changes in the expression pattern of brain-derived neurotro-
phic factor (BDNF) in the brain of rat pups (75).

Extrapolation of Laboratory Results to Clinical Practice

To evaluate the clinical relevance of experimental observa-
tions claiming drug-induced neurotoxicity in the developing
brain is difficult. The first critical issue concerns the extrapo-
lation of appropriate developmental stages from different an-
imal species to humans. For decades, it has been considered
that brain development in 7-d-old mice and rats, the focus of
most experimental studies, corresponds approximately to the

human brain at 32–36 wk of GA (76). Recent work, however,
suggests that the 7-d-old rodent brain is equivalent to the
human brain at 17–20 wk of GA (77). For neuronal circuit
formation, the peak synaptogenic period in humans takes
place between the third trimester of pregnancy and the first
few years of postnatal life (78,79), whereas, in rodents, this
period is situated between the second and fourth postnatal
weeks (80). Clearly, further experiments are needed to eluci-
date the impact of sedative drugs on the developing CNS at
later stages of development.

Another related concern is that there are important devel-
opmental changes in receptor subunit composition of major
neurotransmitter systems during the brain growth spurt. This
strongly determines the functional modalities of neurotrans-
mission and might fundamentally influence the impact of
drugs on the developing CNS. In fact, embryonic/early post-
natal GABAA receptors differ markedly from those expressed
in the adult rodent brain (81–84). For example, in most brain
areas, the �3 subunits along with �2, �3, and �2 subunits are
the most prominent components of the GABAA receptor
complex throughout prenatal and early postnatal development
(82). Similarly, other receptor populations, such as NMDA
and opioid receptors, also have developmentally regulated
subunit composition or subtype expression profiles (85–87)
imparting different functional properties to these receptor
populations.

Furthermore, GABAergic signaling has the unique property
of “ionic plasticity,” which is based on short- and long-term
changes in the Cl� and HCO3� ion concentrations in postsyn-
aptic neurons. Although short-term ionic plasticity is caused
by activity-dependent, channel-mediated anion shifts, long-

Table 2. In vivo toxicity of sedative/analgesic drugs in the developing brain

Drugs Species Experimental plan Short-term effect Long-term effect

Morphine Rats Chronic exposure in utero and
early postnatal days

Decreased brain volume, neuronal
packing density, and dendritic
growth (11–15)

Long-term impairments in learning
abilities and motor activity (16,17)

Fentanyl Mouse 3 injections Exacerbation of ibotenate-induced
white matter lesions (18)

Sufentanil Mouse 3 injections No exacerbation of ibotenate-induced
white matter lesions (18)

Ketamine Rats Single dose No adverse effect (19,20)
Repeated high doses (5–20 mg/kg).

Repeated low doses (2.5 mg/kg)
Inconstant neuronal degeneration

(19–21,59). Neuroprotective effects
(21,32)

No adverse effects. Improvement of
pain-induced excitotoxicity and
long-term cognitive impairments (21)

Mouse Single dose Inconstant neuronal apoptosis (22–24) No gross behavioral consequences (22).
Disrupted spontaneous activity and
learning (24)

Rhesus monkey 24 h continuous i.v. Neuronal cell death inversely
proportional to developmental stage
(25)

Diazepam Rat In utero chronic exposure Altered behavior (26–28)
Mouse Single dose Partial neurodegeneration (29) No behavioral impairment (29)

Midazolam Rat Single dose No increase in neuronal apoptosis (30)
Mouse Single dose Neuronal apoptosis (23)

Propofol Mouse Single dose Dose-dependent neuronal apoptosis
(24)

No or minor behavioral change (24)

Thiopental Mouse Single dose No neuronal apoptosis if used alone
(24)

No or minor behavioral change (24)

Phenobarbital Rat “Plasma concentrations relevant for
seizure control in humans”

Neuronal apoptosis (31)
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term ionic plasticity depends on changes in the expression
patterns and kinetic regulation of molecules involved in anion
homeostasis (88). During development, activation of GABAA

receptors leads to neuronal depolarization because of the high
intracellular Cl� concentrations. Thus, GABA acts as an
excitatory neurotransmitter during brain development. The
functional switch toward the hyperpolarizing actions of this
neurotransmitter is linked to the developmental expression of
the K�–Cl� cotransporter (KCC2), actively extruding intra-
cellular Cl� from neurons (88). KCC2 appears during the
second postnatal week in the rodent cerebral cortex (89) and
from the 30th gestational week in humans (90). These data
raise the intriguing possibility that exposure of premature
babies to GABAergic agents would exert excitatory effects on
the developing brain (67).

The possibility of interspecies differences in terms of drug
effects cannot be excluded (91). In addition to rodents, how-
ever, anesthetic and subanesthetic doses of currently used
anesthetics also induce apoptosis in other species such as
guinea pigs (92) and monkeys (25). Another essential criti-
cism concerns the relatively long exposure time needed to
produce detectable neurotoxic effects in the majority of labo-
ratory studies (93). From a developmental perspective, 6
h-long exposures to anesthetics in rodents would be equivalent
to producing general anesthesia for 2–3 wk in the human
neonate (94). However, recent results showing that even a
single exposure to subanesthetic doses of anesthetics could
trigger 2- to 4-fold increases in neuronal apoptosis in the
mouse brain somewhat counteract these arguments (23). The
rat brain may be vulnerable during specific developmental
periods; in contrast, ketamine administration just before birth
has beneficial effects on subsequent learning in young and
adult rats (95).

New in vitro data indicate that short-term exposure to sedative
drugs can also impair neuronal development by interfering with
dendritic growth and branching without inducing cell death
(4,5,8). Given the importance of neuronal dendritic architecture
in appropriate information processing, one essential next step
will be to determine how neuronal dendritic arborization is
influenced by anesthetics. These experiments, combined with
long-term assessment of behavioral outcomes after short-term
sedation, would probably help us to better understand the
impact of sedative drugs on CNS development.

Differences in anesthetic concentrations of drugs across
different species further complicate the issue of drug-induced
developmental neurotoxicity. For example, subanesthetic
plasma concentrations of ketamine in humans are around
0.1–0.5 �g/mL (96,97), whereas doses of 3 mg/kg i.v. to
induce anesthesia were associated with blood levels of 1–2
�g/mL (98,99). In contrast, as high as 40 mg/kg of ketamine
s.c. was insufficient to produce anesthesia in young mice (23).
Plasma levels of ketamine around 6 �g/mL occurred after a
single s.c. dose of ketamine 20 mg/kg (20). Altogether, these
data suggest that effective plasma concentrations, and proba-
bly “on-site” brain concentrations as well, are significantly
higher in rodents compared with humans, raising further
difficulties in the extrapolation of these experiments to human
infants.

Finally, one can argue that these experimental conditions
are very different from those associated with surgical anesthe-
sia and complex perioperative management, including inten-
sive care (93). First, based on the neuronal stimulation hy-
pothesis (100), preoperative stress and painful stimuli during
surgery can activate NMDA and other excitatory receptors in
the immature brain and anesthetic drugs could thus reduce
extreme degrees of neuronal excitation (101). In line with this
hypothesis, clinical doses of ketamine (2.5 mg/kg) reduced
cell death after inflammatory pain in the newborn rat brain
(21). The average clinical situation is in contrast to experi-
mental settings where anesthesia was administered without
painful stimuli and, consequently, the effect of anesthetics on
the suppression of basal neural activity was evaluated.
Clearly, further experimental studies are needed to better
elucidate this issue. Second, human neonates and children
routinely receive nutritional support and metabolic monitoring
in the perioperative period, thus minimizing the risk for
hypoglycemia and impaired nutrition. In contrast, rodent pups
do not suckle well after general anesthesia, resulting in a
prolonged decrease in weight gain compared with nonanes-
thetized littermates (19). Given that the role of malnutrition in
decreased brain growth and learning disabilities is well estab-
lished (102,103), one cannot exclude the possibility that neu-
rotoxic effects of anesthetics in animal studies are, at least
partially, related to impaired nutrition in the perioperative
period.

Existing Human Data on Neurotoxicity of Sedative
Drugs Used in the NICU

Although neurotoxicity has been studied extensively in
animal models, intense controversy exists about whether drugs
used for sedation in the NICU cause cellular brain damage in
human neonates [see previous report (73)]. The possible del-
eterious effects of sedative/analgesic drugs on brain develop-
ment can be categorized in two groups: direct toxicity due to
pharmacological effects of the drug on immature neurons and
developmental pathways; indirect toxicity due to adverse
events such as respiratory depression, hypotension, bradycar-
dia, or hypoxemia potentially causing brain lesions.

No prospective clinical trial has ever addressed this issue in
the newborn. Two retrospective studies evaluated the long-
term effects of sedation or analgesia in preterm infants hospi-
talized in the NICU. The first study (104) evaluated neurologic
outcome at 5–6 y in survivors from two randomized con-
trolled trials, investigating morphine use in the early 1990s
(105,106). No differences occurred between infants exposed
and nonexposed to morphine, although the rates of death or
disability in both groups were high (in the range of 40% for
both), corresponding to commonly reported clinical outcomes
in the presurfactant era. Another retrospective study compared
5-y neurodevelopmental outcomes between infants born �33
wk GA in 1997 exposed or not exposed to sedation for 7 d or
more during mechanical ventilation and/or surgery (107).
Although this study has limitation, after adjustment for ges-
tational age and propensity, prolonged sedation was not asso-
ciated with poor neurologic outcomes at 5 y. In term infants
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suffering from hypoxic-ischemic encephalopathy, a retrospec-
tive study reported that postnatal morphine use was associated
with improved outcomes, based on psychological assessments
and neuroimaging studies (108). In the light of these findings,
further data analyses of clinical trials examining the use of
hypothermia should also investigate the effects of concomitant
sedative or analgesic therapy on long-term neurodevelopmen-
tal outcomes (109–111).

Although sedative drugs might induce significant physio-
logic perturbations, due to depression of respiratory and cir-
culatory systems, and that this can also be held responsible for
later brain impairment, safety issues have only been studied
for very few drugs in the newborn.

Opioids. In the NEOPAIN (Neurologic Outcomes and Pre-
emptive Analgesics in Neonates) trial (112), after subgroup
analysis of patients who received or did not receive open-label
analgesia, continuous morphine infusion did not increase vul-
nerability of ventilated preterm neonates to adverse neurologic
events. Those who were hypotensive before morphine therapy
and those receiving doses higher than 10 �g/kg/h morphine
(27–29 wk subgroup) were more likely to develop hypoten-
sion, similar to what has been reported by Simons et al. (113)
subsequently. The use of volume expanders and vasopressor
drugs was similar in the two study groups in both trials, and no
relationship among morphine use, blood pressure variability,
and intraventricular hemorrhage (IVH) could be determined.

Midazolam. Continuous infusion of midazolam significantly
decreased blood pressures in one randomized controlled trial
(114) and was related to an increase in IVH in another one (115).
Midazolam decreases cerebral blood flow velocity (116). A
meta-analysis concluded that midazolam should not be used
routinely in ventilated preterm newborns because it prolongs
length of stay in the NICU and potentially may cause harmful
neurologic effects (117). For endotracheal intubation, the only
randomized controlled trial evaluating midazolam combined with
atropine in one arm had to be terminated early because of
frequent severe adverse events in the midazolam group (118).
When midazolam was combined with remifentanil in a small
cohort, no major side effects were reported (119).

Barbiturates. Phenobarbital use in ventilated infants has
been associated to an increase in air leaks (120) and an
increased need for mechanical ventilation (121). However,
ventilation strategies were not detailed in these studies, what
renders interpretation of these findings difficult. Thiopental
provided effective sedation for tracheal intubation but did not
decrease the incidence of desaturations (122,123).

Ketamine. Systemic and cerebral hemodynamic effects of
ketamine were assessed when used as analgesic therapy for
central vein catheterization. No impairment of hemodynamics
could be shown (124). When used for short procedures, higher
doses of ketamine (2 mg/kg) reduced heart rate (125) and 5
mg/kg reduced blood pressure without impairing cardiac out-
put (124). Studies of infants undergoing cardiac catheteriza-
tion have reported respiratory complications (126) and in-
creased blood pressure (127).

Propofol. Propofol use for tracheal intubation in premature
infants caused no hemodynamic adverse events and no high-
grade intracranial hemorrhages were seen on brain ultrasound

performed after drug administration (72). However, other studies
reported hypotension, apnea, respiratory obstruction, and tran-
sient myoclonus in infants receiving propofol (128–131).

Recommendations for Clinical Practice Based on the
Best Available Evidence

Evidence from randomized controlled trials (RCT), system-
atic reviews, or from large observational studies was synthe-
sized to develop practical recommendations for analgesia/
sedation in different settings such as mechanical ventilation,
postoperative analgesia, endotracheal intubation, or other
painful procedures. Efficacy and safety issues are summarized
in Table 3 for continuous analgesia/sedation and in Table 4 for
intermittent analgesia/sedation. These data should be inter-
preted while keeping in mind that methods for assessment of
prolonged pain in preterm newborns are underdeveloped
(132), whereas those for acute pain are well established (133).
A stepwise approach to pain management is represented in
Figure 1. Proposed drug doses in different preterm populations
are summarized in Table 5. The doses listed in Table 5 are
extracted from the clinical studies reviewed in the text and
Tables 3 and 4. Well-designed pharmacological studies are
sparse in the newborn, especially in preterm infants. Most of
the published data only assess pharmacokinetic issues without
considering efficacy. These recommendations are therefore
based on safe doses reported in published clinical trials. When
several doses are reported, we selected and recommend the
lowest effective doses.

Practical Recommendations for Mechanical Ventilation

Routine use of morphine or fentanyl cannot be recom-
mended for ventilated preterm neonates because no obvious
beneficial long-term effects have been proven (134). The
analgesic effect is difficult to quantify as illustrated by the high
rate of open-label morphine use in some trials (112). Particular
caution must be exercised in the most immature infants (under
26 wk GA) or those with preexisting hypotension. Doses �10
�g/kg/h should be used with caution because of potential
hemodynamic, respiratory, and neurologic adverse effects.
Fentanyl is a faster-acting and shorter-lasting drug when
compared with morphine but limited safety data are available
(135–138) and concerns have been raised about opioid toler-
ance and withdrawal (139). Other derivatives of fentanyl
require additional investigations.

The routine use of midazolam (117) or barbiturates (121)
cannot be recommended. As a potentially harmful drug, mi-
dazolam should be prescribed with extreme caution
(116,140,141). Midazolam is often used as additional treat-
ment when analgesia is considered insufficient or as a means
to decrease analgesic use but no evidence supports this prac-
tice in the neonate. Experimental data suggest, however, that
midazolam lacks sedative or analgesic effects in the neonatal
period (67). Moreover, combination of midazolam with opi-
oids has been associated with hypotension, apnea, and hypox-
emia in preterm infants (142).
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Practical Recommendations for Postoperative Analgesia

Morphine (143–145) or fentanyl (146) is effective at decreas-
ing postoperative pain, usually recommended in continuous in-
fusions for safety and simplicity reasons, although careful atten-
tion to dosing and respiratory monitoring is imperative.
Considering current knowledge of routine use of paracetamol
cannot be recommended in newborns (147,148) despite good
hepatic tolerance (149). NSAIDs are an interesting alternative to
opioids avoiding respiratory, hemodynamic, and digestive com-
plications (150). However, they deserve additional investigation
before they can be routinely prescribed. Routine sedation cannot
be recommended for postoperative newborns.

Practical Recommendations for Endotracheal Intubation

To date, the most documented regimen associates an opioid
with a muscle blocker (151). Fast-acting opioids, such as
fentanyl (152–154), are probably more appropriate than mor-
phine (155,156). Despite encouraging results, the paucity of
available data for alfentanil (157) and remifentanil (119,158)
imposes limitations on the use of these drugs.

Propofol certainly offers good intubating conditions and has
the advantage of being a single, easy to prepare drug (72).

However, complementary data should be collected before
generalization of its use. Barbiturates have never been com-
pared with opioids in a randomized trial, although thiopental
provided effective sedation for tracheal intubation without
decreasing episodes of desaturations (122,123). Although mi-
dazolam is widely used in clinical practice, it cannot be
recommended as the drug of choice for intubation, especially
when not combined with an analgesic (118).

A key question conditioning a drug’s choice is what is
considered the optimal time for surfactant administration? If
prophylactic surfactant is given, there is usually no time or
venous access for premedication before intubation in the
delivery room (159). If surfactant is administered later, then
the optimal use of analgesic drugs should not interfere with
the planned extubation time.

Practical Recommendations for Procedural Pain Relief

The most effective method to reduce neonatal pain or
discomfort is to reduce the number of procedures performed
and the episodes of patient handling (160). NICUs and nurs-
eries should develop strategies that limit handling and proce-
dures but do not compromise the care of the infants. When

Table 3. Risk/benefit data for continuous analgesia and/or sedation in the newborn infant

Drugs Populations Efficacy
Clinical safety data, actual or theoretical

risk, and unknowns

Mechanical ventilation
Morphine 23–32 wks GA Pain scores inconsistently decreased (134) Prolongation of ventilation (134)

Possible hypotensive effect in the most
immature infants for doses �10�g/kg/h
(112,113)

Rare long-term outcome available (104)
Fentanyl 26–36 wks GA Constant significant decrease in physiological

or behavioral stress or pain markers (136)
Reduced stress hormones (136)

Preserved gastrointestinal motility (dose: 1
�g/kg/h) vs morphine (137)

Increased ventilatory pressures (dose: 5 �g/kg
bolus then 2 �g/kg/h) (136)

No improvement in short-term outcomes
(136)

No assessment of long-term outcomes
available

Midazolam 24 wks—term Inconstantly improved sedation (114,115) Worse neurological outcomes (200 �g/kg
bolus then 20–60 �g/kg/h) (115)

Hypotension (30 or 60 �g/kg/h) (114)
Decreased cerebral blood flow velocity (200

�g/kg bolus then 200 �g/kg/h) (116)
Barbiturates BW �1750 g No reliable efficiency study Increase in air leaks (2 � 10 mg/kg/12 h then

2.5 mg/kg/12 h) (120)
Increased need for mechanical ventilation

(121)
Postoperative analgesia

Morphine �35 wks BW �1500 g Effective analgesia with same cumulative
doses when used continuously or as
intermittent bolus doses (143–145)

Mainly respiratory side effects (mean doses
10 �g/kg/h) (143–145). No assessment of
long term outcomes

Fentanyl �36 wks Effective analgesia (146) Excessive apnea if given as bolus (2 �g/kg/2
h) (146)

Acetaminophen �36 wks No effect on acute pain (147)
BW �1500 g No decrease in morphine requirements (148)

NSAIDs Term-aged former preterm
infants

Diminished opioid use in one short
descriptive study (150)

Lack of experience

BW, birth weight.
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needed the use of nonpharmacological approaches, such as
sucrose (161), massage (162), kangaroo care (163), or senso-
rial saturation (164), are currently considered safe and effec-

tive for analgesia and should be considered the first line of
treatment.

Whether an opioid should be added remains controversial.
Conflicting results have been reported in the use of morphine
for procedures such as heel lance (165,166) or tracheal suc-
tioning (112,115). During tracheal suctioning, alfentanil was
found to be effective but induced frequent thoracic rigidity
(167), whereas ketamine was found to be inappropriate (125).
For percutaneous central venous catheter (PCVC) placement,
morphine provided good analgesia but induced mild respira-
tory depression (168). Remifentanil showed promising results
during PCVC insertion (169) but requires additional investi-
gation. All other treatments (170) cannot be routinely recom-
mended considering the current evidence.

Remaining Urgent Questions and Perspectives

Clinicians should not forget that multiple lines of evidence
suggest the necessity of analgesia and sedation in infants.

Figure 1. Stepwise approach to neonatal analgesia.

Table 4. Clinical trials data for intermittent analgesia and/or sedation in the newborn infant

Drugs Populations Efficacy
Clinical safety data, actual or theoretical

risk, and unknowns

Endotracheal intubation
Morphine 25–40 wks GA Number of attempts inconsistently

decreased. Hypoxemia episodes or
duration unchanged (155,156)

Possibly inappropriate delay in the onset
of action (too slow) (100 or 200 �g/kg)

Fentanyl 500–4990 g 24–42 wks GA Rare complications, high success rate
at first attempt (152–154).
Addition of placebo vs
mivacurium improves intubation
conditions and tolerance (154)

No deleterious effect on general or
cerebral hemodynamics (3 �g/kg)
(138). No adverse effect on respiratory
compliance (4 �g/kg) (135)

Fentanyl-related synthetic
opioids

�28 wks GA �1000 g Improved intubation conditions with
alfentanil (157) and remifentanil
(119,158)

Chest wall rigidity, frequent hypoxemia.
No data available

Midazolam Not mentioned Trial terminated early because of
frequent severe adverse events in
the midazolam � atropine group
(29% patients required
cardiopulmonary resuscitation)
(118)

Decreased mean arterial pressure and
cerebral blood flow velocity (100 or
200 �g/kg) (116,140,141)

Barbiturates �2000 g �32 wks GA Reduction in heart rate and blood
pressure (122,123)

Frequency of desaturations similar to
placebo (5 or 6 mg/kg) (122,123)

Propofol 25–30 wks GA Faster and more frequently
successful intubation higher
median oxygen saturations vs
atropine/morphine/suxamethonium
(72)

Questionable control group (see morphine
efficacy earlier)

Ketamine 28–36 wks GA, N � 3 Not specifically assessed No cerebral hemodynamic adverse effects
(5 mg/kg) (124)

Other invasive procedures
Morphine 23–32 wks GA. Mainly intubated

infants
Inconsistent efficacy for heel lance

procedure (165,166) Inconsistent
efficacy for tracheal suction
(112,115). Some efficacy for
PCVC insertion (168)

Increased cerebral blood flow (50 �g/kg)
(116)

Fentanyl-related synthetic
opioids

29–36 wks GA �32 wks GA Alfentanil efficient for tracheal
suction but frequent thoracic
rigidity (167). Remifentanil
decreased pain for PICC insertion
(169)

Thoracic rigidity requiring muscle blocker
injection (alfentanil 20 �g/kg) (167).
Same time to complete the maneuver
and procedure time as placebo (169)

Acetaminophen �37 wks GA No effect for heel lance (170) Good hepatic tolerance (149)
Ketamine Ineffective for tracheal suctioning

(125)
No cerebral hemodynamic adverse effect

(5 mg/kg) (124)
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Repetitive painful stimuli may persistently alter pain process-
ing in humans (171), and epidemiologic studies have revealed
an association between peri- and neonatal complications and
behavioral/emotional problems in childhood, anxiety/
depression, and even suicidal tendencies (172,173). Con-
versely, drug toxicity should not be underestimated and risk/
benefit balance must be evaluated when prescribing analgesia
or sedation for neonates. First-line treatment is the decrease in
painful procedures that are still extremely frequent in the
NICU (160). Nonpharmacological analgesia should be con-
sidered when moderate pain is expected. Neonatal units
should establish and follow protocols indicating recom-
mended drugs according to the expected intensity and duration
of pain resulting from invasive procedures.

Basic research should focus on physiologic mechanisms
involved in pain and brain development. At the same time,
development of experimental models should aim at creating
situations as close as possible to clinical settings, e.g. proper
oxygenation during drug administration, optimized nutrition,
and exposure of animals to painful situations as recently
proposed (21).

Clinical research should focus on long-term evaluation of
neurodevelopmental outcome of newborns hospitalized in
NICUs with particular attention to the drugs used. Although
many confounding factors (e.g. underlying pathologies and

social conditions) are usually implicated, large population
studies could provide sufficient statistical power to generate
novel hypotheses. Long-term follow-up of infants included in
large prospective studies on pain control would also provide
precious data.

As for all clinical decisions, the risk/benefit balance should
be carefully addressed when considering analgesic or sedative
treatment in a neonate, using currently available data and
keeping in mind the major research gaps remaining in this
field.
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